22 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип работы турбонаддува бензинового двигателя

Автозапчасти и СТО

Для более ясного представления о том, как работает турбина в автомобиле, прежде всего необходимо ознакомится с принципом работы двигателя внутреннего сгорания. Сегодня, основная масса грузовых и легковых автомобилей оснащаются 4-х тактными силовыми агрегатами, работа которых контролируется впускными и выпускными клапанами.

Каждый из рабочих циклов такого двигателя состоит из 4 тактов, при которых коленвал делает 2 полных оборота.

Впуск — при этом такте осуществляется движение поршня вниз, при этом в камеру сгорания поступает смесь топлива и воздуха (если это бензиновый двигатель) или только воздуха в случае если это дизельный агрегат.

Компрессия — при этом такте происходит сжатие горючей смеси.

Расширение — на этом этапе происходит воспламенение горючей смеси при помощи искры, вырабатываемой свечами. В случае с дизельным двигателем, воспламенение осуществляется произвольно под действием высокого давления впрыска.

Выпуск — поршень двигается вверх, при этом освобождаются выхлопные газы.

Такой принцип работы двигателя определяет следующие способы повышения его эффективности:

— Установка турбонаддува
— Увеличение рабочего объёма двигателя
— Увеличение числа оборотов коленчатого вала двигателя

Как работает турбина в автомобиле?

Увеличение рабочего объёма двигателя

Увеличение объёма двигателя возможно двумя путями: либо увеличением объема камер сгорания, либо — увеличением количества цилиндров в силовом агрегате. Однако такой способ повышения мощности не совсем оправдан, так как имеет ряд недостатков, среди которых: повышенный расход топлива.

Увеличение числа оборотов коленчатого вала двигателя

Еще один возможный способ повышения производительности двигателя заключается в увеличении числа оборотов коленчатого вала. Это достигается путем увеличения количества ходов поршня за единицу времени. Но использование такого способа имеет жесткие ограничения, которые обусловлены техническими возможностями двигателя. Кроме этого, такая модернизация приводит к падению эффективности работы силового агрегата из-за потерь при впуске и других операциях.

Турбонаддув

В двух предыдущих способах двигатель использует воздух, который поступает благодаря собственному нагнетанию. При использовании турбокомпрессора в цилиндр поступает тот же объем воздуха но с предварительным его сжатием. Это дает возможность поступлению большего количества воздуха в цилиндр, благодаря чему появляется возможность сжигания большего объема топлива. При использовании такой технологии, мощность двигателя возрастает по отношению к количеству потребляемого топлива и объему двигателя.

Охлаждение воздуха

В процессе компрессии воздух может нагреваться вплоть до 180 С. Однако воздух имеет свойство увеличения плотности при охлаждении, что дает возможность значительно увеличить объем воздуха, попадающего в цилиндр. Кроме этого, увеличение плотности воздуха существенно снижает расход топлива и количество выбросов продуктов сгорания.

Также существует два разных типа турбонаддува: турбокомпрессор, основанный на использовании энергии выхлопных газов и турбонагнетатель с механическим приводом.

Турбонагнетатель с механическим приводом

В случае использования такого типа компрессии, воздух сжимается благодаря специальному компрессору, который работает от привода двигателя. Но такой метод имеет один большой недостаток. Все дело в том, что при использовании механического турбокомпрессора часть мощность двигателя уходит на обеспечение работы самого компрессора, по этому двигатель, оборудован таким нагнетателем, имеет больший расход топлива чем обычный двигатель такой же мощности.

Турбокомпрессор основанный на использовании энергии выхлопных газов

Такой метод основан на использовании энергии выхлопных газов, которая направлена на привод турбины. При использовании такого способа отсутствует механическое соединение с двигателем, благодаря чему потери мощности не происходит.

Плюсы и минусы турбонаддува

Как уже известно читателю, турбина в автомобиле не имеет жесткой связи с коленчатым валом двигателя. По логике, подобное решение должно нивелировать зависимость оборотов турбины от частоты вращения последнего.

Тем не менее, в реальности эффективность работы турбины находится в прямой зависимости от оборотов мотора. Чем сильнее открыта дроссельная заслонка, чем больше обороты мотора, тем выше энергия выхлопных газов, вращающих турбину и, как результат, больше объем воздуха, нагнетаемого компрессором в цилиндры силового агрегата.

Собственно говоря, «опосредованная» связь между оборотами и частотой вращения турбины не через коленвал, а через выхлопные газы, приводит к «хроническим» недостаткам турбонаддувов.

Среди них – задержка роста мощности мотора при резком нажатии на педаль «газа», ведь турбине нужно раскрутиться, а компрессору – дать цилиндрам достаточную порцию сжатого воздуха. Подобное явление называют «турбоямой», то есть моментом, когда отдача мотора минимальна.

Исходя из этого недостатка сразу исходит и второй – резкий скачок давления после того, как двигатель преодолевает «турбояму». Это явление получило название «турбоподхвата».

И главной задачей инженеров-мотористов, создающих наддувные двигатели, является «выравнивание» этих явлений для обеспечения равномерной тяги. Ведь «турбояма», по своей сути, обуславливается высокой инерционностью системы турбонаддува, ведь для приведения наддува «в полную готовность» требуется определенное время.

В результате потребность в мощности со стороны водителя в конкретной ситуации приводит к тому, что мотор не способен «выдать» все свои характеристики одномоментно. В реальной жизни это, например, потерянные секунды при сложном обгоне…

Безусловно, сегодня существует ряд инженерных ухищрений, позволяющих минимизировать и даже полностью исключить неприятный эффект. В их числе:

  • использование турбины с переменной геометрией;
  • использование пары турбокомпрессоров, расположенных последовательно либо параллельно (так называемые схемы twin-turdo или bi-turdo);
  • применение комбинированной схемы наддува.

Турбина, имеющая переменную геометрию, осуществляет оптимизацию потока выхлопных газов силового агрегата за счет изменения в режиме реального времени площади входного канала, через который они поступают. Подобная схема турбин очень распространена в турбонаддувах дизельных моторов. В частности, именно по этому принципу функционируют турбодизели Volkswagen серии TDI.

Схема с парой параллельных турбокомпрессоров используется, как правило, в мощных силовых агрегатах, построенных по V-образной схеме, когда каждый ряд цилиндров оснащен собственной турбиной. Минимизация эффекта «турбоямы» достигается за счет того, что две малые турбины имеют гораздо меньшую инерцию, нежели одна большая.

Система с парой последовательных турбин используется несколько реже двух перечисленных, но она же обеспечивает наибольшую эффективность за счет того, что двигатель оснащается двумя турбинами, обладающими различной производительностью.

То есть при нажатии на педаль «газа» в действие вступает малая турбина, а при росте скорости и оборотов подключается вторая, и они работают суммарно. При этом эффект «турбоямы» практически исчезает, а мощность нарастает планомерно сообразно ускорению и росту оборотов.

При этом многие автопроизводители используют даже не два, а три турбокомпрессора, как например компания BMW в своей схеме triple-turbo. А вот инженеры, проектировавшие суперкар Bugatti, вообще оснастили силовой агрегат сразу четырьмя последовательными компрессорами, что позволило достичь уникальных мощностных характеристик при вполне «гражданском» поведении мотора в рядовых режимах езды.

Схема так называемого комбинированного наддува или, как ее называют автопроизводители, twincharger, подразумевает совместное использование механического и турбонаддува. При малых оборотах двигателя наддув обеспечивается механическим нагнетателем, а турбина вступает в действие при увеличении числа оборотов. При этом механический нагнетатель отключается. По такой схеме работают наддувные моторы TSI компании Volkswagen.

Как видим, принципы работы турбонаддува достаточно просты и понятны. При этом сегодня автопроизводители всячески делают ставку на турбированные агрегаты малого рабочего объема, которые обеспечивают достаточную мощность при относительной экологической чистоте выхлопа.

Но не следует забывать и еще об одном серьезном недостатке – турбированный мотор испытывает гораздо большие нагрузки и, что вполне закономерно, имеет меньший моторесурс, чем безнаддувный агрегат. Соответственно, взвесив все преимущества и недостатки, и следует выбирать тот или иной силовой агрегат.

Читать еще:  КАМАЗ на метане принцип работы двигателя

Основные преимущества двигателей с турбонаддувом

1) Турбодвигатель имеет меньшее показатели по расходу топлива нежели двигатель без турбины той же мощности и при прочих равных условиях.

2) Силовой агрегат с с турбонаддувом имеет заметно лучшие показатели соотношения веса двигателя к развиваемой им мощности.

3) Использование турбокомпрессора открывает новые возможности по оптимизации других параметров и характеристик двигателя, а также улучшения крутящего момента, что позволит избежать очень часто переключения передач при езде в пробках или гористой местности.

4) Турбодвигатели работают тише чем агрегаты такой же мощности без турбонаддува.

Турбонаддув — принцип действия, достоинства и недостатки

Статья о том, что такое турбонаддув, как он работает, его основные плюсы и минусы. В конце статьи — видео об особенностях и принципах работы турбонаддува.

Содержание статьи:

  • Для чего нужен турбонаддув
  • Устройство и принцип работы турбонагнетателя
  • Преимущества турбонаддува
  • Недостатки
  • Видео об особенностях и принципах работы турбонаддува

Автомобильный двигатель должен обладать такими характеристиками, которые позволили бы ему не отставать от современности. Технические усовершенствования с каждым годом даются все труднее, потому что велосипед-то изобретать никому не хочется, а улучшать качество мотора необходимо.

Поэтому весьма неплохим решением является использование системы принудительного нагнетания воздуха в камеру сгорания. Самые последние инженерные конструкции охватывают не только улучшение принудительного нагнетания воздуха в топливную систему, но и установку такого же устройства в систему выхлопа отработанных газов.

Для чего нужен турбонаддув

Чтобы понимать важность работы турбонаддува и принцип его действия, необходимо знать, что двигатель не может потреблять топливо в чистом виде. Для вспышки бензина в герметичной емкости нужен воздух, иначе двигатель работать не будет.

То есть, в камеру сгорания должна поступать смесь, состоящая из топлива и воздуха в нужной пропорции. В цилиндре эта смесь сгорает. Появившиеся в результате сгорания газы совершают свою главную работу и затем удаляются через систему выхлопа.

Проще говоря, с помощью турбонаддува воздух сжимается, и в камеру сгорания он поступает в большем количестве, нежели при атмосферном давлении.

Устройство и принцип работы турбонагнетателя

Главная деталь нагнетателя, выполняющая основную функцию – это крыльчатка с лопастями. Вращаясь с огромной скоростью (200 тыс. оборотов в минуту) и действуя как компрессор, она закачивает воздух в турбинную камеру.

После этого происходит сжатие воздуха, за счет чего объем, который этот воздух занимает, уменьшается. Однако давно известно, что по законам физики во время сжатия воздух имеет свойство нагреваться. И это является главным недостатком системы турбонаддува.

Разумеется, эта проблема не могла пройти мимо внимания конструкторов. Решая эту задачу, специалисты попробовали использовать промежуточное охлаждение воздуха на пути его перехода в двигатель.

В результате появился интеркулер. В этом устройстве применяется эффект теплообменника, который имеет свойство охлаждать воздух за счет хладагента. Интеркулер способен увеличить мощность мотора до 20%, и при этом он еще снижает вероятность детонации выхлопных газов.

Особой разницы между турбонаддувом бензиновых и дизельных двигателей почти нет. Отличие лишь в степени наддува. Дизельные двигатели требуют большего давления, и поэтому они оснащены более мощными нагнетателями воздуха. В бензиновых моторах установлены нагнетатели меньшей мощности, потому что при слишком большом давлении в камере сгорания может возникнуть детонация.

Преимущества турбонаддува

«Дармовая» дополнительная мощность. Существует расхожее мнение: наличие добавочной турбины на выхлопном коллекторе мотора порождает добавочную энергию, которая должна вращать точно такую же турбину на впуске, в результате чего выхлопные газы становятся бесплатным источником энергии для нагнетателя.

Однако эта концепция весьма спорная, потому что существует так называемое сопротивление выпуска. Автомобильные конструкторы многие десятилетия добивались снижения этого сопротивления, потому что именно в этом случае повысится мощность двигателя.

Для этого в систему монтируется специальное генерирующее устройство, которое значительно снижает выходное сопротивление. Поэтому было бы неправильным считать работу турбонаддува на дармовой энергии. «Дешевая придаточная энергия» — это будет звучать более точно.

В техническом отношении этот процесс не представляет ничего сложного. Нагнетатель представляет собой устройство, состоящее из двух колес – компрессорного и турбинного. Турбинное колесо захватывает выхлопные газы, приводящие его в движение. В результате начинает вращаться и компрессорное колесо, которое и служит для сжатия воздуха.

Компрессор в обязательном порядке контактирует с системой охлаждения, потому что в процессе действия его температура поднимается довольно высоко. Сила наддува регулируется с помощью перепускного клапана. В случае необходимости он может переводить часть выхлопа мимо турбины, чтобы понизить внутрисистемное давление.

Повышение мощности двигателя без увеличения его объема и массы. Технология турбонаддува позволяет повышать мощность двигателя без увеличения объема цилиндров и их количества. В результате легкие и небольшие по размеру моторы приобретают отличные характеристики, и, кроме этого, сокращается общая масса автомобиля, уменьшаются тормозной путь и время разгона.

Экономичность. Расход топлива у двигателей, оснащенных системой турбонаддува, в разы меньше, нежели расход топлива у мотора такой же мощности с простым атмосферным нагнетанием воздуха. Это объясняется тем, что в цилиндрах с турбонаддувом на один ход поршня тратится намного меньше топлива за счет полного его сгорания. То есть, бедная смесь компенсируется дополнительным напором воздуха, и в результате мощность увеличивается.

Недостатки

Зависимость от оборотов. «Турбояма». Проблема заключается в следующем: нет активного ускорения при разгоне на малых оборотах. Динамика разгона слабая, уступающая даже машинам с атмосферным нагнетанием. А все дело в том, что при малых оборотах энергия выхлопных газов слабая, и, соответственно, турбина нагнетателя тоже вращается слабо, создавая минимальное давление смеси в камере сгорания. То есть, нужный эффект от турбонаддува возникает только при высоких оборотах двигателя.

Кроме этого, есть еще одна проблема: медленность процесса нагнетания воздуха. Действительно, для того, чтобы создать нужное давление на впуске, необходимо некоторое время. Специалисты проводят инженерные исследования в этой области, и уже в какой-то степени удалось уменьшить этот интервал в динамике работы нагнетателя.

Помимо этого, наличие вариатора или автоматической трансмиссии дает возможность машине во время разгона автоматически переключаться на пониженную передачу. За счет этого вредные последствия от инертности нагнетателя ликвидируются.

Сегодня имеются следующие способы решения проблемы инертности турбонаддува:

  • битурбонаддув (двойной наддув);
  • турбина с адаптивной геометрией;
  • комбинированный наддув.

При двойном турбонаддуве применяются две небольшие турбины, которые в совокупности работают намного быстрее, чем одна с номинальным размером. Число цилиндров распределяется между этими турбинами поровну. Аналогом такой системы может быть применение нескольких компрессоров, которые приходят в движение на разных оборотах мотора, каждый в своем режиме.

Турбина с адаптивной геометрией способна изменять размер впускного канала и тем самым регулировать силу потока выхлопных газов, что также повышает эффективность работы системы.

Комбинированный наддув состоит из турбокомпрессора и механического нагнетателя. Нагнетатель создает нужное давление на малых оборотах, но как только обороты возрастают до определенной величины, в работу включается турброкомпрессор.

Высокая температура. Как уже было сказано, сжатие воздуха влечет за собой его нагрев, что отражается на работе мотора не самым лучшим образом. Поэтому зачастую приходится подключать дополнительное охлаждение, и на это уходит часть энергии.

Однако несмотря на перечисленные недостатки, турбонаддув – это отличное средство для повышения мощности и эффективности ДВС, а также его экономичности. Кроме того, многолетний опыт специалистов показывает, что варианты усовершенствования этой системы еще не исчерпаны.

Видео об особенностях и принципах работы турбонаддува:

ТУРБОНАДДУВ (ТУРБИНА) ДВИГАТЕЛЯ: ВИДЫ, КОНСТРУКЦИЯ, ПРИНЦИП РАБОТЫ, ПЛЮСЫ И МИНУСЫ

Добрый день, сегодня мы узнаем, что такое турбонаддув (турбина) двигателя внутреннего сгорания, каков принцип работы, конструкция, а также, какими плюсами и минусами обладают системы наддува мотора. Кроме того, в статье мы выясним, какие существуют виды систем наддува двигателя и, чем они отличаются. В заключении мы наглядно рассмотрим типовую схему функционирования турбонаддува силового агрегата.

Читать еще:  Мотоблок как транспортное средство

Как мы знаем, мощность двигателя зависит от количества воздуха и смешанного с ним топлива, которое может быть доставлено в мотор. Если мы хотим увеличить мощность двигателя, необходимо увеличить как количество подаваемого воздуха, так и топлива. Подача большего количества топлива не имеет никакого эффекта до тех пор, пока не будет необходимого для его сгорания количество воздуха, иначе образуется избыток не сгоревшего топлива, что приводит к перегреву двигателя и повышенной непрозрачности или дымности от отработанных выхлопных газов, причем также, как это происходит при масложоре.

1. ОСОБЕННОСТИ И КОМПОНЕНТЫ ТУРБОНАДДУВА ДВИГАТЕЛЯ

Увеличение мощности двигателя может быть достигнуто путем увеличения либо его рабочего объема, либо частоты вращения коленчатого вала. Увеличение смещения увеличивает вес, размеры двигателя и, в конечном счете, его стоимость. Увеличение частоты вращения коленчатого вала проблематично из-за возникших технических проблем, особенно для двигателей с большим объемом.

Технически приемлемым решением проблемы увеличения мощности является использование нагнетателя (компрессора). Это означает, что поступающий в двигатель воздух сжимается перед входом в камеру сгорания. Другими словами, компрессор обеспечивает подачу необходимого количества воздуха, достаточного для полного сгорания увеличенной дозы топлива. Следовательно, при предыдущем рабочем объеме и той же частоте вращения коленчатого вала мы получаем больше мощности.

Существует две основные системы наддува: с механическим приводом, которая отражена ниже на изображении “A” и просто “турбо”, отражена на рисунке “B” (использующие энергию отработавших газов). Кроме того, существуют также комбинированные системы, например, турбо компаундная, отображена на рисунке “в”. Ниже на фото наглядно продемонстрированы вышеописанные системы наддува двигателя.

В случае компрессора с механическим приводом необходимое давление воздуха получают благодаря механической связи между коленчатым валом двигателя и компрессором. Давление воздуха турбокомпрессора достигается за счет вращения потока выхлопных газов турбины. Турбокомпрессор состоит из двух турбин впрыска и привод, соединенный с валом. Вал установлен на двух подшипниках, которые постоянно подается масло, оказывающие охлаждающее и смазочную поддержку.

Обе турбины вращаются в одном направлении и с одинаковой скоростью. Выходящие из цилиндров двигателя отработавшие газы имеют высокую температуру и давление. Они ускоряются до высокой скорости (около 10 000 оборотов в минуту) и соприкасаются с лопастным приводным колесом, и преобразуют свою кинетическую энергию в механическую вращательную энергию (крутящий момент). С такой же скоростью и давлением вращается колесо турбины, которое подает сжатый воздух в двигатель. Разрядное колесо сконструировано таким образом, что уже при небольшом расходе выхлопных газов достигается достаточное давление нагнетаемого воздуха. При полной нагрузке двигатель достигает максимального избыточного давления (от 1,1 до 1,6 атмосфер); при этом обороты двигателя составляют около 2000 оборотов в минуту и остаются постоянными при дальнейшем наборе частоты вращения до максимальной.

Между двигателем и турбокомпрессором имеется соединение только через поток выхлопных газов. Частота вращения турбины напрямую не зависит от скорости вращения коленчатого вала двигателя и характеризуется некоторой инерцией, то есть увеличением подачи топлива, увеличением энергии выхлопного потока, а затем увеличением частоты вращения турбины и напором разряда, а мотор, следовательно, получает больше воздуха в цилиндры, что позволяет увеличить подачу топлива. Ниже на фото продемонстрирована схема типового турбокомпрессора и его основных элементов.

Основные компоненты турбокомпрессора: 1 – трубопровод для подачи сжатого воздуха от турбины к диафрагме; 2 – нагнетательное колесо турбины; 3 – корпус нагнетательного колеса; 4 – промежуточный корпус; 5 – сбрасывающий клапан; 6 – диафрагма; 7 – пружина; 8 – диафрагменная камера; 9 – приводное колесо; 10 – корпус турбонагнетателя; 11, 12 – опоры; А – подача воздуха от воздушного фильтра; B – подача воздуха к впускным клапаном; C – обводной канал сбрасывающего клапана для ограничения давления нагнетания; D – подача отработавших газов от двигателя; E – подача отработавших газов к выпускной системе; H – подача смазки; J – отвод смазки; K – подача сжатого воздуха для открытия сбрасывающего клапана.

2. ПРИНЦИП РАБОТЫ, ПЛЮСЫ И МИНУСЫ СИСТЕМ ТУРБОНАДДУВА

Для предотвращения нарастания давления более, чем необходимо на высоких оборотах двигателя, в компрессоре находится специальное устройство, состоящее из разгрузочного клапана и диафрагмы с пружиной, которое обеспечивает контроль давления и оборотов мотора. Полость перед мембраной связана с давлением поступающего воздуха через трубопровод. С увеличением давления, которое происходит с нарастанием частоты вращения коленчатого вала, диафрагма сгибается, сжимая пружину опуская и открывая клапан. Выхлопные газы таким образом проходят через дополнительный обводной канал с тем, чтобы снизить скорость вращения приводного колеса турбины, а значит и разгрузочного колеса. Повышение давления становится постоянным.

Для двигателей, работающих в широком диапазоне скоростей (например, в легковом автомобиле), высокое давление наддува желательно даже на низких оборотах. Поэтому будущее принадлежит турбокомпрессорам с регулируемым давлением. Небольшой диаметр современных турбин и специальные сечения газовых каналов способствуют уменьшению инерционности, то есть турбина очень быстро разгоняется, и давление воздуха очень быстро достигает требуемого показателя.

Для удовлетворения все возрастающих требований, которые необходимы для автомобильной техники в областях потребления топлива, выбросов выхлопных газов и шума, сегодня проектируются и разрабатываются электронные системы контроля за наддувом.

На первом этапе, исходя из определенного количества параметров, таких как температура охлаждающей жидкости, масла, впускной воздух и выхлопные газы происходит анализ состояния двигателя. Кроме того, измеряются обороты двигателя, положение педали акселератора и другие параметры. Все эти данные анализируются компьютером и используются для определения оптимума в условиях давления наддува на мотор.

На втором этапе значение давления передается исполнительным устройствам, контролирующим этот показатель во впускной системе. При определении этого давления также учитываются критические условия работы двигателя, в частности, детонация. Акустические датчики позволяют определить даже самовозгорание в системах мотора. Давление наддува в этом случае уменьшается. Эта операция повторяется до тех пор, пока детонация не исчезнет. Когда детонация остановится, давление наддува снова возрастет до исходного значения. Компьютер также определяет идеальное давление наддува в случае повторяющейся детонации, возникающей, например, из-за использования некачественного топлива.

Электромагнитный клапан получает электрический сигнал, который определяет время его открытия, и работает, соответственно, как специальный регулятор турбины. Таким образом, мембрана действует не на все давление наддува, а только на ее небольшую часть. Данный момент зависит от положения электромагнитного клапана.

При нажатии на педаль акселератора компьютер выдает команду закрыть клапан и все выхлопные газы заходят в турбину, вызывая повышение давления наддува и мотор развивает значительную мощность, что делает возможным быстро ускориться автомобилю. После достижения желаемой скорости сбрасывающий клапан открывается, и давление наддува становится стандартным. Ниже на фото продемонстрирована принципиальная схема электронного управления турбонаддувом.

Вариантом системы наддува для двигателей легковых автомобилей является волновой нагнетатель воздуха, также известный, как Comprex. Двигатель, управляемый через зубчатый ремень, делится на секции, ротор вращается в цилиндрическом корпусе с торцами прорезных окон для прохождения свежего воздуха и выхода выхлопных газов. Система окон и полостей выполнена особым образом, что позволяет волнам давления выхлопного потока преобразовать под давлением поток свежего воздуха. Ниже на изображении наглядно отображен волновой нагнетатель системы турбонаддува.

Основные элементы волнового нагнетателя системы наддува двигателя: 1 – поток свежего воздуха под высоким давлением; 2 – зубчатый ремень; 3 – поток свежего воздуха под низким давлением; 4 – поршень двигателя; 5 – поток отработавших газов под высоким давлением; 6 – поток отработавших газов под низким давлением; 7 – ротор; 8 – щелевые окна.

Существенным достоинством волнового нагнетателя является непосредственный газодинамический энергообмен между отработавшими газами и свежим воздухом без участия каких-либо промежуточных механизмов. Такой энергообмен происходит со звуковой и сверхзвуковой скоростью. Волновой обменник, как и механический нагнетатель, автоматически реагирует на изменения нагрузки изменением давления наддува. При постоянном передаточном отношении между двигателем и волновым нагнетателем, энергооб­мен оптимален только для одного рабочего режима.

Для устранения вышеописанного недостатка, на торцах корпуса имеется ряд воздушных «карманов» разной формы и размера, благодаря которым диапазон оптимальной работы нагнетателя расширяется. Кроме того, это позволяет достичь благоприят­ного протекания кривой крутящего момента, чего невозможно добиться при помощи других методов наддува.

Читать еще:  ОВС 25 принцип работы

Нагнетатель волнового типа по сравнению с другими устройствами наддува требует много места для ременной передачи и систем трубопроводов. Это усложняет возможность его установки в подкапотном пространстве автомобиля. Однако для дизельных двигателей используется турбонаддув с изменяемой геометрией турбины, который позволяет ограничить поток выхлопных газов через турбину при высокой частоте вращения коленчатого вала двигателя. Ниже на изображение наглядно продемонстрирован принцип работы волнового турбонаддува.

Основные фазы и компоненты участвующие в работе волнового наддува двигателя: а – положение направляющих лопаток при высокой скорости потока отработавших газов; б – положение направляющих лопаток при низкой скорости потока отработавших газов; 1 – крыльчатка турбины; 2 – управляющее кольцо; 3 – подвижные направляющие лопатки соплового аппарата; 4 – управляющий рычаг; 5 – управляющий пневматический цилиндр; 6 – поток отработавших газов.

Подвижные направляющие лопатки соплового типа изменяют сечение каналов, через которые отработанные газы устремляются на крыльчатку турбины. Они соприкасаются в турбине и происходит выброс газа под давлением с желаемым повышающим коэффициентом. При низкой нагрузке двигателя подвижные лопасти открывают небольшое поперечное сечение каналов, так что повышается давление выхлопа назад. Поток газов в турбине развивается на высокой скорости, обеспечивая высокую скорость вала нагнетателя. Поток выхлопных газов действует на более удаленную от оси вала область лопаток крыльчатки турбины.

Таким образом, имеется большая моментная нагрузка на рукоятку, которая увеличивает крутящий момент. При высокой нагрузке направляющие лопатки открывают большее поперечное сечение каналов, что снижает скорость течения потока выхлопных газов. В результате этого турбо нагнетатель при равном количестве выхлопных газов меньше ускоряется и работает с меньшей частотой при большем количестве газов. Этот метод ограничивает давление наддува. Поворачивая кольцо управления, он изменяет угол наклона лопастей, которое устанавливаются под определенным углом либо непосредственно отдельным рычагом управления, установленным на лопастях, или при помощи поворотных камер.

В свою очередь поворотное кольцо осуществляет управление пневматическим цилиндром под действием вакуума или давления воздуха и в качестве альтернативы, с помощью положения обратной связи двигателя лопастей (датчика положения) их открывает. Открытый нагнетатель с изменением геометрии находится в определенном положении и поэтому безопасен, то есть в случае отказа управления ни он, ни двигатель не повреждаются. Однако могут возникать потери, но только от производительности и при низких частотах вращения коленчатого вала.

В заключении отметим, что турбонаддув — это определенный тип наддува, при помощи которого воздух в рабочую область цилиндров нагнетается под сильным давлением за счет использования энергии отработанных газов. Турбонаддув используется на бензиновых и дизельных двигателях. Наиболее эффективен в сочетании с дизельным мотором вследствие высокой степени сжатия газов в двигателе и довольно невысокой частоты вращения вала коленчатого типа. Однако сдерживающими факторами использования и применения систем наддува двигателей на бензиновых моторах являются моменты, связанные с наступлениями детонаций, которые возникают в связи с резким повышением частоты вращения двс. Кроме того, при работе на высоких температурах с отработанными газами может происходить сильный перегрев системы наддува мотора, что в свою очередь приводит к выходу из строя самой турбины автомобиля.

Описание и принцип работы турбонаддува двигателя

Среди всех возможных вариантов наддува двигателя внутреннего сгорания наибольшее распространение получил турбонаддув, в котором воздух подается в цилиндры при помощи специального устройства — турбокомпрессора (турбины). Вращение турбины осуществляют отработавшие газы, что позволяет существенно увеличить мощность двигателя без увеличения частоты оборотов последнего. Помимо этого, турбонаддув позволяет получать большие значения крутящего момента при небольшом расходе топлива. В сравнении с классическими конструкциями при аналогичной мощности турбированный двигатель имеет более компактные габаритные размеры.

Устройство системы турбонаддува

На практике турбонаддув применяется как на моторах, использующих дизельное топливо, так и на бензиновых. Однако наиболее часто эта система встречается именно на дизельном двигателе, поскольку для них характерна высокая степень сжатия, меньшая температура выхлопа и низкие обороты коленчатого вала. Более высокая степень сжатия обеспечивает повышение мощности турбированного двигателя и увеличивает его КПД.

В бензиновых моторах температура отработавших газов выше, что может спровоцировать эффект детонации, приводящий к быстрому износу поршневой группы. Для предотвращения этого явления необходимо использовать бензин с более высоким октановым числом, что не всегда является экономически выгодным.

Принцип работы турбины

Система турбонаддува состоит из следующих элементов:

  • Воздухозаборник;
  • Воздушный фильтр;
  • Перепускной клапан — регулирует подачу отработавших газов;
  • Дроссельная заслонка — регулирует подачу воздуха на впуске;
  • Турбокомпрессор — повышает давление воздуха во впускной системе. Состоит из турбинного и компрессорного колес;
  • Интеркулер — охлаждает воздух, способствуя лучшему наполнению цилиндров и снижению вероятности детонации;
  • Датчики давления — фиксирует давление наддува в системе;
  • Впускной коллектор — распределяет воздух по цилиндрам;
  • Соединительные патрубки — необходимы для крепления элементов системы между собой.

Принцип работы турбонаддува

Принцип работы системы турбонаддува заключается в следующем:

  • Отработавшие газы двигателя, проходя через турбокомпрессор, раскручивают турбинное колесо.
  • Вращение турбинного колеса передается компрессорному, поскольку они закреплены на одном валу.
  • Компрессор сжимает воздух, поступающий из воздухозаборника, и направляет его в интеркулер.
  • В интеркулере воздух охлаждается и поступает на впуск в цилиндры двигателя.

В турбокомпрессоре предусматривается возможность регулировки давления выхлопных газов на лопасти турбины с целью не допустить превышение давления наддува в системе. Это осуществляется с помощью перепускного клапана, который приводится в движение пневмо- или электроприводом. В свою очередь, управление приводом осуществляется электронным блоком управления, который считывает информацию с датчика давления.

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название «турбояма». Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка — «турбояма». Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от «турбоямы»:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим

Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему — возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Достоинства и недостатки системы турбонаддува

Подводя итоги, можно выделить плюсы и минусы использования на моторе турбонаддува. В числе достоинств:

  • увеличение мощности двигателя;
  • повышение КПД двигателя;
  • снижение расхода топлива.

К минусам можно отнести:

  • низкий крутящий момент на малых оборотах двигателя;
  • более высокая стоимость;
  • более сложное обслуживание и эксплуатация.
Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector