270 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гидромеханическая коробка передач принцип работы

Содержание

ГИДРОМЕХАНИЧЕСКАЯ ПЕРЕДАЧА

Гидромеханическая передача (ГМП) успешно применяется на автомобилях уже более полувека и дает возможность заметно облегчить управление автомобилем.

Применение гидромеханической передачи на автомобиле позволяет получить следующие преимущества:

1. Обеспечение автоматизации переключения передач и отсутствие необходимости иметь пе­даль сцепления.

2. Повышение проходимости автомобиля в условиях бездорожья за счет отсутствия разрыва потока мощности при переключении передач.

3. Повышение долговечности двигателя и агрегатов трансмиссии за счет способности гидротрансформатора снижать динамические нагрузки.

В то же время как недостаток необходимо отметить потерю мощности и повышение расхода топлива за счет более низкого КПД ГМП по сравнению с автомобилем, имеющим механическую коробку передач.

Гидромеханическая передачавключает в себя три основные части:

механическую коробку передач;

На автомобилях ГМП впервые появилась в США: в 1940 г. коробка Hydramatic была установлена на автомобилях Oldsmobile. Справедливости ради необходимо отметить, что еще с начала 1930-х гг, на английских автобусах использовалась гидромеханическая трансмиссия Wilson, которая не была автоматической, но облегчала работу водителя. В настоящее время в США ГМП снабжаются 90 % легковых автомобилей, а также все городские автобусы и значительная часть грузовых автомобилей. В Европе массовое применение ГМП началось только в начале семидесятых годов прошлого века, когда эти передачи нашли применение в автомобилях Mercedes-Benz, Opel, BMW. В это же время в Европе строятся специализированные заводы по производству ГМП: фирма Borg-Warner строит завод в Англии (г. Летифорд), Ford – в г. Бордо (Франция), GM – в Страсбурге (Франция). В Японии появляются сразу два специализированных производства – Jatco и Aisin-Wamer.

Гидротрансформатор (рис. 3.34; 3.35) был изобретен немецким профессором Феттингером в 1905 г. Прежде чем найти применение на автомобилях, гидротрансформатор использовался на судах и тепловозах.

Простейший гидротрансформатор, выполнен в виде камеры тороидальной формы и включает в себя три лопастных колеса: насосное,вал которого соединен с коленчатым валом двигателя; турбинное,соединенное с трансмиссией, и реактор,установленный в корпусе гидротрансформатора (рис. 3.36).

Гидротрансформатор заполняется спе­циальной жидкостью. Каждое колесо имеет наружный и внутренний торцы, между кото­рыми располагаются профилированные ло­пасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеканию жидкости препятствует специ­альное уплотнение.

При вращении коленчатого вала двигате­ля вращается насосное колесо, которое перемещает жидкость, находящуюся между его лопастями. Жидкость не только вра­щается относительно оси гидротрансфор­матора, но и за счет воздействия на нее цен­тробежных сил перемещается вдоль лопа­стей насосного колеса по направлению от входа к выходу, что сопровождается увеличе­нием кинетической энергии потока. На выхо­де из насосного колеса поток жидкости попа­дает на турбинное колесо, оказывая силовое воздействие на его лопасти. Затем поток по­падает в реактор, пройдя который, возвра­щается к входу в насосное колесо. Таким об­разом, жидкость постоянно перемещается по з проточными частями всех трех лопастных колес вии. При этом насос передает энергию двигател

Если бы между насосным и турбинным колесом отсутствовал реактор, то такая конструкция (гидромуфта) осуществляла бы перенос энергии от двигателя к трансмиссии гидравлическим способом, без возможности изменения крутящего

Рис. 3.36. Детали гидротрансформатора:1 — насосное колесо; 2 — турбинное колесо; 3 — крышки муфты свободного хода; 4 — часть корпуса гидротрансформатора; 5 — остатки рабочей жидкости с продуктами механического износа деталей; 6 — колесо реактора; 7 — муфта свободного хода реактора; 8 — упорная шайба турбинного колеса; 9 — упорный под­шипник реактора; 10 — поршень блокировки гидротрансформатора

Максимальный коэффициент трансформации зависит от конструкции гидротрансформатора и может составлять до 2,4 (при неподвижном турбинном колесе). При увеличении час­тоты вращения вала двигателя увеличивается угловая скорость насосного и турбинного ко­лес, а увеличение крутящего момента в гидротрансформаторе плавно уменьшается. Когда угловая скорость турбинного колеса приближается к угловой скорости насосного, поток жид­кости, поступающей на лопасти реактора, изменяет свое направление на противоположное.

Для того чтобы реактор на этом режиме не создавал помех потоку жидкости, его устана­вливают на муфте свободного хода, и он начинает свободно вращаться (гидротрансформа­тор переходит на режим гидромуфты), что позволяет, в свою очередь, снизить потери. Такие гидротрансформаторы называют комплексными.

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД — 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если уве­личивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обес­печивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханиеская передача является бесступенчатой позволяет получить любое передаточное число в заданном диапазоне.

В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и обычные ступенчатые коробки передач с автоматическим управлением.

Простая планетарная передача состоит из центральной, «солнечной», шестерни и на­ружной шестерни в виде кольца, с внутренним зубьями; эти две шестерни связаны между собой посредством нескольких (обычно трех) шестерен-сателлитов, смонтированных на общей раме, которая называ­йся водилом.

Для того чтобы планетарная передача вменяла крутящий момент, нужно обеспечить вращение одного из ее элементов («солнечной», коронной шестерни или водила), ) один из элементов затормозить. В этом случае третий элемент будет вращаться с угловой скоростью, определяемой числом зубьев шестерен, входящих в планетарную передачу. Если одновременно затормозить два элемента, планетарная передача будет работать, как прямая с передаточным числом равным единице. Планетарная передача позволяет легко реверсировать вращение для получения заднего хода автомобиля. В то же время такие передачи достаточно омпактны, обеспечивают возможность по­лучения больших передаточных чисел и легко соединяются последовательно для получения большого числа ступеней. Для переключе­ния передач достаточно просто затормажи­вать валы отдельных элементов планетар­ной коробки передач. Раньше в качестве тормозных устройств часто использовали ленточные тормоза, а в последнее время они практически вытеснены многодисковы­ми «мокрыми» сцеплениями — фрикциона­ми. Существуют и более сложные варианты планетарных передач.

Первые американские ГМП легковых ав­томобилей имели двухступенчатую переда­чу, причем низшая передача включалась вручную. Однако впоследствии одной авто-

Читать еще:  Принцип работы садового опрыскивателя

Что такое гидромеханическая коробка передач и как она работает

Сцепление и коробка переключения передач – это традиционные узлы любого отечественного или зарубежного автомобиля. Трансмиссия является элементом, обеспечивающим поступление крутящего момента от силового агрегата к колесам. Если раньше большинство транспортных средств оснащались механической коробкой, то сегодня все больше автолюбителей отдают предпочтение гидромеханической АКПП. Отчасти это связано с тем, что управление машиной упрощается, поскольку педаль сцепление отсутствует, а переключение скоростей происходит автоматическим образом.

АКПП в разрезе

Назначение комбинированной трансмиссии легкового авто

Образ жизни современных водителей существенно меняется и сегодня все больше требований предъявляются к созданию оптимальных комфортных условий во время вождения. Стандартные узлы автомобилей терпят существенные изменения, среди ярких примеров можно выделить комбинирование механической и гидравлической КП. Если говорить о гидромеханической трансмиссии и что это такое, первым делом стоит понять, в чем ее предназначение. Главное отличие заключается в плавном изменении вращающего движения. Облегченное управление позволило отказаться от использования сцепления, поскольку комбинированная КП отвечает за все процессы. При АКПП можно говорить о следующих ситуациях, касающихся управления авто:

  • Во время переключения скоростей трансмиссия отключается от силового агрегата.
  • Если дорожные условия меняются, величина вращающего момента также будет менять свое значение.

Использование АКПП на авто позволяет получить несколько неоспоримых преимущества. Помимо автоматизации переключения скоростей стоит отметить также повышение эксплуатационных характеристик силового агрегата и коробки и улучшение проходимости транспортного средства в условиях бездорожья.

Гидравлическая коробка автомат

Разновидности гидромеханики

Коробки автомат долгое время устанавливались исключительно на автомобили среднего класса и категории премиум. На сегодняшний день агрегат получил массовое использование и пользуется у автолюбителей все большей популярностью. АКПП способны значительно повысить комфорт во время вождения, но стоит учесть, что такие узлы отличаются по разновидностям, каждая из которых имеет свои преимущества и недостатки. Разобравшись в принципе работы гидромеханических коробках передачи, можно будет определиться с выбором, какой тип АКПП подходит конкретному водителю. Стоит упомянуть о следующих типах гидромеханических КП:

  • Гидромеханический автомат. Это одна из первых трансмиссий подобного рода, которая появилась как альтернатива «механике». Конструкция представляет собой комбинацию гидротрансформатора и планетарной КП. Наличие электронных компонентов позволяют значительно повысить функциональные особенности агрегата.
  • Вариаторная трансмиссия. Пользуется меньшей популярностью из-за того, что отсутствуют привычные фиксированные ступени. К преимуществам можно отнести максимальную плавность хода, а объясняется это как раз отсутствием смены передачей. Конструкция бесступенчатой трансмиссии выглядит следующим образом: для передачи крутящего используется привычный гидравлический преобразователь, а изменение крутящего момента происходит за счет изменения диаметра ведущего и ведомого шкива. Данные компоненты соединяются при помощи ремня и цепи, а изменение диаметра будет зависеть от скорости и нагрузки.
  • Роботизированная коробка. Массово начала использоваться около 20 лет назад. От механики отличий немного, имеется сцепление, но разница заключается в том, управление работой сцепления происходит в автоматическом режиме. К преимуществам «робота» можно отнести невысокую стоимость, динамичный разгон и экономию топлива. Что касается недостатков, главным является снижение уровня комфорта.
  • Преселективные коробки с двойным сцеплением. К таким относятся устройства DSG или Powershift. Агрегат можно отнести к роботизированным КП, но с более высокими техническими характеристиками. По конструкции напоминает привычную механику, но в этот раз инженеры использовали сразу два агрегата, помещенные в одну коробку.

Роботизированные агрегаты и АКПП – это устройства, цель которых заключается в упрощении взаимодействия водителя с трансмиссией.

Функции гидротрансформатора

Гидравлический трансформатор, по сути, являет собой усовершенствованную гидромуфту. Обычная муфта выполняет задачу простого вращения, то в случае АКПП добавляется увеличение крутящего положения. Агрегат выполняет несколько основных функций, одной из которых является демпфирующее действие во время вращательного движения. При постоянной разнице скорости вращения возникают потери, поэтому происходит блокировка, в результате которой вращающий момент начинает передаваться через демпфирующие пружины. Блокировочная муфта выполняет еще одну полезную функцию, предотвращение повышения расхода топлива. Говоря о функциях гидромеханической трансмиссии автомобиля, стоит отметить и некоторые негативные факторы.

Важно! При блокировке нередко наблюдается повышенное давление на важные компоненты мотора и трансмиссии. Фрикционные компоненты могут изнашиваться быстрей, а в масло могут попадать частицы, образовавшиеся в результате трения. В результате ходовые характеристики могут ухудшиться, а смена передачи перестанет быть плавной. Автовладельцам необходимо беречь коробку во время разгона или торможения.

Устройство гидротрансформатора

О том, что представляет устройство гидромеханической передачи, можно понять, изучив ее конструкцию. Главным узлами являются гидротрансформатор, механическая КП и механизмы управления. Гидротрансформатор – это главный компонент, а выполняет он практически ту же функцию, что и сцепление. Изучив конструкцию данной детали, можно заметить, что она состоит из трех колес, имеющих специальную форму. Первое колесо – насосное, его назначение выполнять связь между гидравлическим узлом и силовым агрегатом. Второе кольцо – турбинное, оно образует связь с первичным валом коробки. Третье колесо – реакторное, его функция состоит в усилении крутящего момента. Все три компонента закрыты посредством специального корпуса, внутренний объем которого на три четверти заполнен смазочным материалом. От двигателя крутящий момент поступает на насосную часть, затем посредством вращательных движений направляет на турбинное колесо смазочный материал, в результате чего усилие передается на первичный вал. По мере нагрузки гидротрансформатор в автоматическом режиме будет менять момент силы, который в свою очередь, передаваясь к механическим узлам, будет переключаться посредством фрикционных компонентов. Напор жидкости, проходящий от напорного диска к турбине, регулируется также в автоматическом режиме.

Устройство гидротрансформатора

Планетарная коробка передач

В автомате обычно используется планетарная коробка. Несмотря на ее простое устройство, крутящий момент регулируется нужным образом и направляется к солнечной шестерне. С планетарным механизмом сцеплены шестерни-сателлиты свободного вращения, на которых предусмотрено специальное водило для связи с валом. Крутящий момент будет передаваться через водило в случае нахождения шестерни в заторможенном режиме, а если шестерня будет расторможено, то сателлиты начнут отправлять крутящий момент на нее. О том, как работает гидромеханическая коробка передач можно понять, изучив ее конструкцию. Планетарная КП является одной из разновидностей комбинированной системы. Название узла связано с тем, что сателлиты вращаются вокруг центральной шестерни подобно планетам солнечной системы. Применение данных компонентов в автомате обусловлено простотой модификации передаточного отношения. Для этого достаточно притормозить одну из деталей узла или соединить несколько элементов посредством фрикционной муфты.

Электронная часть гидромеханической АКПП

Современные автоматические коробки оснащаются электронным управлением, что позволяет выдерживать заданные моменты с более высокой точностью. Если в более старых устройствах речь шла о значении в 6-8%, то КП с электронным управлением выдерживают точность в 1%. Появились новые возможности, исходя из скорости и нагрузки на мотор, компьютер может определить массу транспортного средства и ввести необходимые поправки. Главными компонентами электронной системы управления являются рычаг управления и электронный блок. В данную систему также входят и определенные подсистемы, такие как:

  • Подсистема ручного управления.
  • Система, вырабатывающая управляемые сигналы.
  • Элементы функционирования.
  • Автоматическая защита.
  • Измерительные узлы.
  • Исполнительная система.

Внешний вид роботизированной КП

Читать еще:  Принцип действия турбины автомобиля

Плюсы и минусы гидромеханики

Автомобили, оснащенные АКПП, обеспечивают более безопасное и комфортное вождение, поскольку предоставляют возможность сконцентрироваться на дороге, не отвлекаясь на лишние действия. Особое преимущество получают начинающие водители, которым трудно использовать механику.

Важно! Если в автошколе ученик проходит обучение на авто с АКПП, он не сможет управлять транспортным средством с механической КП, так как в водительском удостоверении будет соответствующая пометка.

К преимуществам автоматизированной коробки можно отнести следующее:

  • Передачи не нужно переключать вручную;
  • Выполняется равномерная подача мощности. Авто, оснащенные АКПП, отличаются плавным ходом во время переключения скоростей.
  • В случае с механической КП могут возникнуть трудности с троганием, при резком опускании сцепления двигатель может заглохнуть. В транспортных средствах с «автоматом» данный процесс контролируется электронными компонентами.

У коробки-автомат имеются и свои недостатки, главный из которых – это дороговизна обслуживания. Стоит отметить и высокие требования к условиям эксплуатации. Еще одним минусом является отсутствие возможности завести авто с «толкача», при севшем аккумуляторе.

Гидромеханика – это выбор тех автовладельцев, которые не стеснены в финансовых средствах и не готовы пожертвовать своим комфортом. При грамотном управлении и уходе машина с «автоматом» более надежна и безопасна в управлении.

Гидромеханическая коробка передач. Устройство

Гидромеханическая коробка передач ⭐ состоит из:

  • гидротрансформатора;
  • механической коробки передач.

На легковых автомобилях наибольшее распространение получили гидромеханические коробки с планетарными механическими коробками. Их преимущества:

  • компактность конструкции;
  • меньшая металлоемкость и шумность;
  • больший срок службы.

К недостаткам относятся:

  • сложность;
  • высокая стоимость;
  • пониженный КПД.

Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.

Гидротрансформатор

Гидротрансформатор представляет собой гидравли­ческий механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками:

  • насосного (ведущего);
  • турбинного (ведомого);
  • реактора.

Насосное колесо 3 закреплено на маховике 1 двигателя и образует корпус гидротрансформатора, внутри которого размещены тур­бинное колесо 2, соединенное с первичным валом 5 коробки передач и реактор 4, установленный на роликовой муфте 6 свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.

Рис. Гидротрансформатор:
а – общий вид; б – схема; 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта

Каждое колесо имеет наружный и внутренний торцы, между которыми располагаются профилированные лопасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеснению жидкости препятствуют специальные уплотнения.

При работающем двигателе насосное, колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача крутящего момента в гидротрансформаторе.

Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач. Наибольшее увеличение крутящего момента на турбинном колесе гидротрансформатора получается при трогании автомобиля с места, при этом коэффициент трансформации может составлять до 2,4. В этом случае реактор неподвижен так как заторможен муфтой свободного хода. По мере разгона автомобиля увеличивается скорость вращения насосного и турбинного колес. При этом муфта свободного хода расклинивается и реактор начинает вращаться с увеличивающейся скоростью, оказывая все меньшее влияние на передаваемый крутящий момент. После достижения реактором максимальной скорости вращения гидротрансформатор перестает изменять крутящий момент и переходит на режим работы гидромуфты. Таким образом, происходит плавный разгон автомобиля и бесступенчатое изменение крутящего момента.

Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и к ведущими колесами автомобиля, Это обеспечивается следующим образом: с уменьшением скорости вращения ведущих колес автомобиля при возрастании сопротивления движению возрастает динамический напор жидкости от насоса на турбину, что приводит к росту крутящего момента на турбине, следовательно, на ведущих колесах автомобиля.

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД до 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную планетарную коробку передач, которая компенсирует указанные недостатки.

Планетарная коробка передач

Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся и зацеплении с коронной шестерней 2, имеющей внутренние зубья.

Рис. Планетарный механизм:
1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз

Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7 или многодискового «мокрого» сцепления. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным.

В автоматических коробках передач применяются фрикционные муфты сцепления. Фрикционная муфта сцепления со­стоит комплекта покрытых слоем фрикционного материала дисков, прижатых друг к другу через прокладки в виде тонких пластин из гладкого металла.

Рис. Фрикционная муфта сцепления автоматической коробки передач:
1 – канал подачи рабочей жидкости; 2 – поршень; 3 – кожух муфты; а – выключенное состояние; б – включенное состояние

При этом часть фрикционных дисков оснащены внутренними шлицами, часть – наружными. Прижимание дисков друг к другу обеспечивается гидравлическим поршнем 2, для выключения сцепления применяется возвратная пружина. При подаче к поршню давления рабочей жидкости диски плотно прижимаются друг к другу, образуя одно целое. Как только давление снимается, возвратная пружина отводит поршень назад и диски выводятся из зацепления. В качестве возвратных пружин могут использоваться винтовые, диафрагменные и гофрированные дисковые пружины.

Двухступенчатая гидромеханическая коробка передач

В качестве примера гидромеханических передач рассмотрим двухступенчатую гидромеханическую коробку передач. Она состоит из гидротрансформатора 1, механической планетарной коробки передач с многодисковым фрикционом 3 и двумя ленточными тормозными механизмами 2 и 4 и гидравлической системы управлениях кнопочным переключением передач. Кнопки соответственно означают нейтральное положение, задний ход, первую передачу и движение с автоматическим переключением передач. В двухступенчатой механической коробке передач имеются два одинаковых планетарных механизма 5 и 6.

Читать еще:  Устройство и принцип работы гидроцилиндра

Рис. Гидромеханическая коробка передач:
1 – гидротрансформатор; 2,4 – тормозные механизмы; 3 – фрикцион; 5,6 – планетарные механизмы

В нейтральном положении фрикцион 3, а также тормозные механизмы 2 и 4 выключены. Трогание автомобиля с места происходит при включенной первой передаче. В этом случае масло под давлением поступает в цилиндр тормозного механизма 2, лента которого затягивается, и солнечная шестерня планетарного механизма 6 останавливается.

Если включена кнопка «Движение», то при разгоне автомобиля происходит автоматическое переключение на вторую передачу, что обеспечивается одновременным выключением тормозного механизма 2 и включением фрикциона 3. В этом случае планетарные механизмы 5 и 6 блокируются и вращаются как одно целое.

Для движения автомобиля задним ходом включается только тормозной механизм 4.

В настоящее время автоматические коробки передач имеют электронное управление, что позво­ляет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 6…8 %). Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения. Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Система автоматического управления обычно состоит из следующих подсистем:

  • функционирования (гидравлические насосы, регуляторы давления)
  • измерительная, собирающая информацию о параметрах управления
  • управляющая, вырабатывающая управляющие сигналы
  • исполнительная, осуществляющая управление переключением передач, работой двигателя
  • подсистема ручного управления
  • подсистема автоматических защит, предотвращающая возникновение опасных ситуаций

Основными элементами электронной системы управления являются электронный блок и рычаг управления.

АКП с электронным управлением

В качестве примера современной АКП с электронным управлением рассмотрим шестиступенчатую коробку передач 09G японского концерна AISIN.

АКП состоит из гидротрансформатора, механической планетарной коробки передач с многодисковыми фрикционами и многодисковыми тормозными механизмами, гидравлической системы, систем охлаждения и смазки, электрической системы.

Рис. Разрез автоматической шестиступенчатой коробки передач 09G:
К– многодисковые муфты; В – многодисковые тормоза; S – солнечные шестерни; Р – сателлиты; РТ – водило; F – обгонная муфта; 1 – вал турбинного колеса; 2 – ведомая шестерня промежуточной передачи; 3 – жидкостный насос

Планетарные ряды объединены по схеме, разработанной Лепеллетье (Lepelletier). Крутящий момент двигателя подводится к одинарному планетарному ряду. Далее он направляется на сдвоенный планетарный ряд Равиньо (Ravigneaux).

Рис. Двухредукторная планетарная система Лепеллетье:
а – обычный планетарный редуктор; б – планетарный редуктор Равиньо; 1 – вал турбинного колеса; Р1 – сателлит коронной шестерни Н1; Р2 – сателлит солнечной шестерни 2; Р3 – сателлит коронной шестерни 1; S1 ­­– солнечная шестерня 1; S2 — солнечная шестерня 2; S3 — солнечная шестерня 3; Н1 – коронная шестерня 1; Н2 – коронная шестерня 2

Управление одинарным планетарным рядом производится посредством многодисковых муфт K1 и K3 и многодискового тормоза B1. Число сателлитов в планетарных рядах выбирается в зависимости от передаваемого крутящего момента.

Сдвоенный планетарный ряд управляется посредством многодисковой муфты K2, многодискового тормоза B2 и обгонной муфты F. В системе управления муфтами предусмотрены устройства динамической компенсации рабочего давления, которые делают работу муфт независящей от частоты вращения. Муфты K1, K2 и K3 служат для подвода крутящего момента к планетарным рядам, а с помощью тормозов B1 и B2, а также обгонной муфты обеспечивается передача реактивных моментов на картер коробки передач.

Давление в рабочих цилиндрах муфт и тормозов изменяется посредством регулирующих клапанов.

Обгонная муфта F представляет собою механизм, который работает параллельно с тормозом.

Гидромеханическая коробка передач: принцип работы и устройство

Несмотря на растущую популярность автомобилей с автоматической коробкой передач, классическая механика по-прежнему в почете у многих водителей. Она надежнее, чем АКПП. Но при эксплуатации водитель постоянно вынужден работать с педалью сцепления. Это доставляет некие неудобства, особенно в пробке. Так появилась гидромеханическая коробка передач. Принцип работы ее и устройство рассмотрим в нашей сегодняшней статье.

Характеристика

Те водители, которые не хотят работать со сцеплением, отдают предпочтение именно этой трансмиссии. Гидромеханическая коробка передач выполняет сразу несколько функций. Она совмещает в себе сцепление и классическую коробку.

О конструкции

Устройство гидромеханической коробки передач предполагает наличие гидравлического трансформатора. Данный элемент, в зависимости от конструктивных особенностей, может быть двух-, трех- и многовальным. Сейчас производителями применяется планетарная автоматическая гидромеханическая коробка передач.

Как работает вальная КПП

На грузовых автомобилях и крупных автобусах чаще всего используется многовальная трансмиссия. Для того чтобы переключить передачу, здесь используются многодисковые муфты. Для их работы необходима смазка. Масло гидромеханической коробки передач значительно отличается по консистенции от «механики». В последнем случае оно более густое. Для того чтобы включить первую и заднюю скорость на гидромеханике, используются зубчатые муфты. Такая конструкция позволяет максимально плавно передавать крутящий момент от маховика на колеса.

Планетарные

Сейчас это более распространенная гидромеханическая коробка передач.

Как работает планетарная КПП

Ее алгоритм работы предельно прост. Переключение скоростей на планетарной гидромеханической трансмиссии производится при помощи фрикционных муфт. Также для сглаживания ударов при переключении на пониженную, применяют специальную тормозную ленту. Именно при работе «тормоза» снижается сила передачи крутящего момента. Но при этом переключение скоростей более плавное, нежели у вальных аналогов.

В основе планетарной трансмиссии лежит гидравлический трансформатор. Данный элемент расположен между двигателем и КПП. ГДФ состоит из нескольких составляющих:

В народе данный элемент называют «бубликом» из-за его характерной формы.

Особенности конструкции планетарной КПП

Планетарная гидромеханическая коробка передач состоит из ведущего вала, на котором находится сочлененная шестерня. Также здесь имеются сателлиты, вращающиеся на отдельных осях. Данные элементы вводятся в зацепление с внутренними зубьями коробки и коронной шестерней. Передача крутящего момента осуществляется благодаря действию тормозной ленты. Она затормаживает коронную шестерню. По мере разгона автомобиля, их обороты растут. Задействуется ведомый вал, который воспринимает передачу крутящего момента от ведущего.

О КПД

Что касается коэффициента полезного действия, он на порядок ниже, чем на вальных КПП.

Обслуживание и ремонт гидромеханической коробки передач

При эксплуатации данной трансмиссии, необходимо следить за уровнем масла. Данная жидкость здесь является рабочей. Именно масло задействует турбины для передачи крутящего момента. На механических же коробках оно просто смазывает трущиеся шестерни. Производители рекомендуют производить замену масла на гидромеханических коробках каждые 60 тысяч километров. Стоит отметить, что в конструкции такой КПП имеется свой фильтр. Он тоже меняется при достижении данного срока. Эксплуатация на низком уровне масла грозит пробуксовкой и перегревом трансмиссии.

Как продлить ресурс

Чтобы увеличить срок эксплуатации гидромеханической коробки, необходимо следить за уровнем масла. При его недостаточном количестве возникает перегрев коробки. Рабочая температура не должна превышать 90 градусов. Современные автомобили оснащаются датчиком давления масла. Его загорелась контрольная лампа, не стоит игнорировать ее. В дальнейшем это может спровоцировать поломку гидротрансформатора.

Заключение

Итак, мы выяснили, что собой представляет гидромеханическая коробка передач. Как видите, при должном обслуживании она будет такой же надежной, как механическая. При этом водителю не придется постоянно выжимать сцепление.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector